AERONET: Ground-based AERONET Level 2.0 Version 3, AERONET [dataset], (https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_aod.html, last accessed May 20, 2022.
Alexandrov, M.D., Schmid, B., Turner, D.D., Cairns, B., Oinas, V., Lacis, A.A., Gutman, S.I., Westwater, E.R., Smirnov, A. und Eilers, J.: Columnar water vapor Retrievals from multifilter rotierende shadowband radiometer data, J. Geophys. Res., 114, D02306,https://doi.org/10.1029/2008JD010543, 2009.
AMS (American Meteorological Society): Glossar der Meteorologie, AMS,https://glossary.ametsoc.org/wiki/Cloud_albedo, last access: November 20, 2022.
Bennouna, Y.S., Torres, B., Cachorro, VE, Ortiz de Galisteo, J.P., and Toledano, C.: The assessment of the annual integrated water vapor cycle over the Iberian Peninsula from EOS-MODIS against various terrestrial techniques, Q. J. Roy . Meteor. Society, 139, 1935-1956,https://doi.org/10.1002/qj.2080, 2013.
Borger, C., Beirle, S., Dörner, S., Sihler, H. und Wagner, T.: Total water vapor recovery from the S-5P/TROPOMI column in the visible blue spectral range, Atmos. Mess. Tech., 13, 2751–2783,https://doi.org/10.5194/amt-13-2751-2020, 2020.
Bovensmann, H., Burrows, J., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V., Chance, K., and Goede, A.: SCIAMACHY: Mission Objectives and Measurement Modes, J . A atmosfera. Sei., 56, 127-150,https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
Bright, J.M., Gueymard, C.A., Killinger, S., Lingfors, D., Sun, X., Wang, P., and Engerer, N.A.: Climatic and global validation of daily MODIS precipitated water data at AERONET sites for irradiation of clear sky modeling, in: Proceedings of EuroSun Conference 2018 on Solar Energy and Buildings, Rapperswil, Schweiz, 10.–13. September 2018,https://doi.org/10.18086/eurosun2018.09.07, 2018.
JP Burrows, M Weber, M Buchwitz, V Rozanov, A Ladstätter-Weißenmayer, A Richter, R DeBeek, R Hoogen, K Bramstedt, K Eichmann. , Eisinger, M., and Perner, D.: The Global Ozone Monitoring Experiment (GOME): Mission Concept and Early Scientific Results, J. Atmos.Sci., 56, 151-175,https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2, 1999.
Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., and Lefebvre, A.: Second-generation GOME-2-Metops sensor for operational ozone monitoring, ESA Bull.-Eur. Outer Space, 102, 28-36, 2000.
Campanelli M., Mascitelli A., Sanò P., Diémoz H., Estellés V., Federico S., Iannarelli A.M., Fratarcangeli F., Mazzoni A., Realini E., Crespi , M., Bock, O., Martínez-Lozano, J. A. und Dietrich, S.: Precipitatable water vapor content of sun-sky ESR/SKYNET radiometers: validation against GNSS/GPS and AERONET at three different sites in Europe, Atmos . Mess. Tech., 11, 81–94,https://doi.org/10.5194/amt-11-81-2018, 2018.
Chan, K. L., Valks, P., Slijkhuis, S., Köhler, C., and Loyola, D.: Total column water vapor recovery for visible blue observations from the Global Ozone Monitoring Experiment-2 (GOME-2) ), Atmos. Mess. Tech., 13, 4169–4193,https://doi.org/10.5194/amt-13-4169-2020, 2020.
Chan, K. L., Xu, J., Slijkhuis, S., Valks, P., e Loyola, D.: TROPOsphericMonitoring Instrument Observations of Total Column Water Vapor: Algorithm and Validation, Sci. ambiente total, 821, 153232,https://doi.org/10.1016/j.scitotenv.2022.153232, 2022.
Colman, R.: A comparison of climate feedbacks in general circulation models, Clim. Dynam., 20, 865–873,https://doi.org/10.1007/s00382-003-0310-z, 2003.
Diedrich, H., Preusker, R., Lindstrot, R., und Fischer, J.: Total diurnal columnar water vapor recovery from MODIS measurements over land surfaces, Atmos. Mess. Tech., 8, 823–836,https://doi.org/10.5194/amt-8-823-2015, 2015.
Dlugokencky, E., Houweling, S., Dirksen, R., Schröder, M., Hurst, D., Forster, P., und WMO-Sekretariat: Observing Water Vapor, World Meteorological Organization (WMO), Bulletin nº: Vol. 2, No. 65(2)-2016,https://public.wmo.int/en/resources/bulletin/observando-água-vapor(last access: February 23, 2022), 2016.
Dupuy , E. , Morino , I. , Deutscher , N.M. , Yoshida , Y. , Uchino , O. , Connor , B.J. , De Mazière , M. , Griffith , D.W.T. P. W. , Iraci , L. T. , Kawakami , S. , Kivi , R. , Matsunaga , T. , Notholt , J. , Petri , C. , Podolske , J. R. , Pollard , D. F. , Rettinger , M. , Roehl , C. M. , Sherlock , . . . . V. , Sussmann , R. , Toon , G. C. , Velazco , V. A. , Warneke , T. , Wennberg , P. O. , Wunch , D. , and Yokota , T. : Comparison of XH2The Abgerufen von GOSAT Short Wavelength Infrared Spectra with Observations from the TCCON Network, Remote Sensing, 8, 414,https://doi.org/10.3390/rs8050414, 2016.
Fragkos K, Antonescu B, Giles DM, Ene D, Boldeanu M, Efstathiou GA, Belegante L and Nicolae D: Total precipitable water assessment from a solar photometer, microwave radiometers and radiosondes at a continental site in southeastern Europe, Atmos. Measuring Tech., 12, 1979-1997,https://doi.org/10.5194/amt-12-1979-2019, 2019.
Gendt, G., Dick, G., Reigber, C., Tomassini, M., Liu, Y., and Ramatschi, M.: Near real-time GPS water vapor monitoring for numerical weather forecasting in Germany, J. .Meteorol. Society Jpn., 82, 361–370,https://doi.org/10.2151/jmsj.2004.361, 2004.
Giles DM, Sinyuk A, Sorokin MG, Schafer JS, Smirnov A, Slutsker I, Eck TF, Holben BN, Lewis JR, Campbell JR, Welton EJ, Korkin SV. , and Lyapustin, A.I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – Near real-time automated quality control algorithm with improved cloud screening for AOD (Aerosol Optical Depth) measurements with solar photometers, Atmos. measuring Tech., 12, 169-209,https://doi.org/10.5194/amt-12-169-2019, 2019.
Holben, BN, Eck, TF, Slutsker, I, Tanré, D, Buis, JP, Setzer, A, Vermote, E, Reagan, JA, Kaufman, YJ, Nakajima, T, Lavenu, F, Jankowiak, I., e Smirnov, A.: AERONET – A Federated Network of Instruments and Data Archive for Aerosol Characterization, Remote Sensing. Genetics, 66, 1–16,https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Inamdar, A.K. and Ramanathan, V.: Tropical and global interactions between water vapour, atmospheric greenhouse effect and surface temperature, J. Geophysics. Res., 103, 32177-32194,https://doi.org/10.1029/1998JD900007, 1998.
Kleipool Q, Ludewig A, Babić L, Bartstra R, Braak R, Dierssen W, Dewitte P-J, Kenter P, Landzaat R, Leloux, J., Loots, E., Meijering, P., van der Plas, E., Rozemeijer, N., Schepers, D., Schiavini, D., Smeets, J., Vacanti, G., Vonk, F., and Veefkind, P.: Pre-launch calibration results of the TROPOMI payload aboard the Sentinel-5 Precursor satellite, Atmos. Mess. Tech., 11, 6439–6479,https://doi.org/10.5194/amt-11-6439-2018, 2018.
Küchler T., Noël S., Bovensmann H., Burrows JP, Wagner T., Borger C., Borsdorff T., und Schneider A.: Total Water Vapor Columns Saved from Sentinel 5P using AMC-DOAS-Verfahren, Atmos. Mess. Tech., 15, 297–320,https://doi.org/10.5194/amt-15-297-2022, 2022.
Lambert, A., Read, W. e Livesey, N.: MLS/Aura Level2 Water Vapor (H2O) Mixing Ratio V004, Greenbelt, MD, EUA, Goddard Earth Sciences Data and Information Services Center (GES DISC),https://doi.org/10.5067/Aura/MLS/DATA2009, 2015.
Le Texier, H., Solomon, S. and Garcia, R. R.: The role of molecular hydrogen and methane oxidation in stratospheric water vapor equilibrium, Q. J. Roy. Meteor. Soc., 114, 281-295, 1998.
Levelt, P., Van den Oord, G. H. J., Dobber, M., Malkki, A., Visser, H., deVries, J., Stammes, P., Lundell, J., and Saari, H.: The instrument of ozone monitoring, IEEE T. Geosci. Fernerologia, 44, 1093–1101,https://doi.org/10.1109/TGRS.2006.872333, 2006.
R Lindstrot, M Stengel, M Schröder, J Fischer, R Preusker, N Schneider, T Steenbergen and B R Bojkov: A global climatology of total columnar water vapor from SSM /I and MERIS, Earth system. Science. Dates, 6, 221–233,https://doi.org/10.5194/essd-6-221-2014, 2014.
Loyola DG, Gimeno García S, Lutz R, Argyrouli A, Romahn F, Spurr RJD, Pedergnana M, Doicu A, Molina García V, and Schuessler O. : TROPOMI operational cloud recovery algorithms aboard Sentinel-5 Precursor, Atmos. Measuring Tech., 11, 409-427,https://doi.org/10.5194/amt-11-409-2018, 2018.
Loyola, D.G., Xu, J., Heue, K.-P. and Zimmer, W.: Applying FP_ILM for the recovery of daily geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) maps from UVN satellite measurements, Atmos. Mess. Tech., 13, 985–999,https://doi.org/10.5194/amt-13-985-2020, 2020.
Ludewig A, Kleipool Q, Bartstra R, Landzaat R, Leloux J, Loots E, Meijering P, van der Plas E, Rozemeijer N, Vonk F ., and Veefkind, P.: In-flight calibration results of the TROPOMI payload aboard the Sentinel-5 Precursor satellite, Atmos. Mess. Tech., 13, 3561–3580,https://doi.org/10.5194/amt-13-3561-2020, 2020
Martins, V. S., Lyapustin, A., Wang, Y., Giles, D. M., Smirnov, A., Slutsker, I., and Korkin, S.: Global validation of columnar water vapor derived from the EOS MODIS-MAIAC algorithm against the soil observations based on AERONET, Atmos. Res., 225, 181–192,https://doi.org/10.1016/j.atmosres.2019.04.005, 2019.
Oman, L., Waugh, D.W., Pawson, S., Stolarski, R.S., and Nielsen, JE: Understanding changes in stratospheric water vapor in coupled chemical-climate model simulations, J. Atmos. Sci., 65, 3278-3291,https://doi.org/10.1175/2008JAS2696.1, 2008.
Pérez-Ramírez, D., Whiteman, D.N., Smirnov, A., Lyamani, H., Holben, B.N., Pinker, R., Andrade, M., and Alados-Arboledas, L.: Evaluation of AERONET precipitable water vapor versus Mikrowellenradiometrie, GPS und Radiosonden and ARM-Standorten, J. Geophys. Res.-Atmos., 119, 9596–9613,https://doi.org/10.1002/2014JD021730, 2014.
Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy, Springer, Berlin, Heidelberg,https://doi.org/10.1007/978-3-540-75776-4, 2008.
Raval, A. and Ramanathan, V.: Observational Determination of the Greenhouse Effect, Nature, 342, 758-761,https://doi.org/10.1038/342758a0, 1989.
Schneider , A. , Borsdorff , T. , aan de Brugh , J. , Aemisegger , F. , Feist , DG , Kivi , R. , Hase , F. , Schneider , M. and Landgraf , J. : First set of dice of H2O/HDO-Säulen vom Tropospheric Monitoring Instrument (TROPOMI), Atmos. Mess. Tech., 13, 85–100,https://doi.org/10.5194/amt-13-85-2020, 2020.
Schneider, A., Borsdorff, T., aan de Brugh, J., Lorente, A., Aemisegger, F., Noone, D., Henze, D., Kivi, R. and Landgraf, J.: Recuperando H2Tropospheric Monitoring Instrument (TROPOMI) O/HDO columns over cloudy and clear sky scenes, Atmos. measuring Techn., 15, 2251-2275,https://doi.org/10.5194/amt-15-2251-2022, 2022.
Schneider, M., Romero, P. M., Hase, F., Blumenstock, T., Cuevas, E., and Ramos, R.: Continuous quality assessment of atmospheric water vapor measurement techniques: FTIR, Cimel, MFRSR, GPS and Vaisala RS92, Atmosphere. Measuring Tech., 3, 323-338,https://doi.org/10.5194/amt-3-323-2010, 2010.
Shi F, Xin J, Yang L, Cong Z, Liu R, Ma Y, Wang Y, Lu X and Zhao L: The first validation of precipitable water vapor from multisensor satellites over typical regions of China, Remote Sens.Environ. , 206, 107–122,https://doi.org/10.1016/j.rse.2017.12.022, 2018.
Smirnov, A., Holben, B. N., Lyapustin, A., Slutsker, I., und Eck, T. F.: AERONET Processing Algorithms Refinement, Proceedings of AERONET Workshop, NASA/GSFC Aeronet project, El Arenosillo, Espanha, 10.–14. maio de 2004 ,https://aeronet.gsfc.nasa.gov/new_web/spain2004/spain_presentations.html) (last access: November 16, 2022), 2004.
Turner, D.D., Lesht, B.M., Clough, S.A., Liljegren, J.C., Revercomb, H.E., and Tobin, D.C.: Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience, J. Atmos. Ozean. Tech., 20, 117–132, 2003.
Vaquero-Martinez J, Anton M, Chan KL. and Loyola, D.: Evaluation of the water vapor product of the TROPOMI and GOME-2 satellites against ground-based GNSS data in Europe, Atmosphere, 13, 1079,https://doi.org/10.3390/atmos13071079, 2022.
Veefkind JP, Aben I, McMullan K, Förster H, de Vries J, Otter G, Claas J, Eskes HJ, de Haan JF, Kleipool Q, van Weele M, Hasekamp O, Hoogeveen R, Landgraf J, Snel R, Tol P, Ingmann P, Voors R, Kruizinga B, Vink, R., Visser, H., and Levelt, P.F.: TROPOMI on ESA Sentinel-5 Precursor: A GMES Global Atmospheric Composition Observation Mission for Climate, Air Quality and Ozone Layer Applications, Remote Sensing. Environment, 120, 70 -83,https://doi.org/10.1016/j.rse.2011.09.027, 2012.
Weaver D., Strong K., Schneider M., Rowe PM, Sioris C., Walker KA, Mariani Z., Uttal T., McElroy C.T., Vömel H., Spassani A. ., and Drummond, J. R.: Comparison of atmospheric water vapor measurements at a Canadian high Arctic site, Atmos. Measuring Tech., 10, 2851-2880,https://doi.org/10.5194/amt-10-2851-2017, 2017.
Wunch, D., Toon, G.C., Blavier, J.-F. L., Washenfelder, R.A., Notholt, J., Connor, B.J., Griffith, D.W.T., Sherlock, V. und Wennberg, P.O.: The Total Carbon Column Observation Network, Philos. Troy. Soc.A, 369, 2087–2112,https://doi.org/10.1098/rsta.2010.0240, 2011.
Xie Y, Li Z, Hou W, Guang J, Ma Y, Wang Y, Wang S, and Yang D: Validation of FY-3D MERSI-2 Precipitable Water Vapor (PWV) data sets using AERONET terrestrial PWV data, Remote Sens ., 13, 3246,https://doi.org/10.3390/rs13163246, 2021.